

Finite Automata
Part One

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of
computer?

What is a computer?

Bell Labs in Oakland, CA
(Photo by Larry Luckham, 1969)

 Apple
Watch
(2018)

http://www.larryluckham.com/1969%20&%2070%20-%20Bell%20Labs/album/slides/Bell_Labs__0012.html

Two Challenges

● Computers are dramatically better now than
they’ve ever been, and that trend continues.

● Writing proofs on formal definitions is hard,
and computers are way more complicated
than sets, graphs, or functions.

● Key Question: How can we prove what
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?

Enter Automata

● An automaton is a mathematical model
of a computing device.

● It’s an abstraction of a real computer
● Same way that graphs are abstractions of

social networks, transportation grids, etc.

What do these automata look like?

A Tale of Two Computers

Why does this
computer…

Why does this
computer…

…“feel” less
powerful than

this one?

…“feel” less
powerful than

this one?

7 8 9 ÷

4 5 6 ×

1 2 3 –

0 . = +

Calculators vs. Desktops

● A calculator has a small amount of memory.
A desktop computer has a large amount of
memory.

● A calculator performs a fixed set of functions.
A desktop is reprogrammable and can run
many different programs.

Computing with Finite Memory

7 8 9 ÷

4 5 6 ×

1 2 3 –

0 . = +

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in brain.

Memory limited by beads.

Data stored in wood.
Algorithm is in brain.

Memory limited by beads.

How do we model “memory” and
”an algorithm” when they can take

on so many forms?

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

1

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

13

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

137

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

+
137

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

4

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

42

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

Modeling Finite Computation

● We will model a finite-
memory computer as a
collection of states linked
by transitions.

● Each state corresponds to
one possible configuration
of the device’s memory.

● Each transition indicates
how memory changes in
response to inputs.

● Some state is designated
as the start state. The
computation begins in that
state.

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₁

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₁

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

● This device processes
strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

● Once we’ve finished
entering all the
characters of our input,
we need to obtain the
result of the
computation.

● As a simplifying
assumption, we’ll assume
(for now) that we just
need to get a single bit of
output. That is, our
machines will just say
YES or NO.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

● Some of the states in our
computational device will
be marked as accepting
states. These are denoted
with a double ring.

● If the device ends in an
accepting state after
seeing all the input,
accepts the input (says
YES)

● If the device does not end
in an accepting state after
seeing all the input, it
rejects the input (says NO).

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

● Some of the states in our
computational device will
be marked as accepting
states. These are denoted
with a double ring.

● If the device ends in an
accepting state after
seeing all the input,
accepts the input (says
YES)

● If the device does not end
in an accepting state after
seeing all the input, it
rejects the input (says NO).

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

q₃q₃

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₀q₀

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₁q₁

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₁q₁

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₀q₀

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₀q₀

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₂

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₂

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₂

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

Finite Automata

● This type of computational
device is called a finite
automaton (plural: finite
automata).

● Finite automata model
computers where (1)
memory is finite and (2)
the computation produces
as YES/NO answer.

● In other words, finite
automata model
predicates, and do so with
a fixed, finite amount of
memory.

Finite-memory
Computer

input

YES

NO

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Formalizing Things

Strings

● An alphabet is a finite, nonempty set of symbols called
characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:

a aabaaabbabaaabaaaabbb abbababba

● The empty string has no characters and is denoted ε.

– Calling attention to an earlier point: since all
strings are finite sequences of characters from Σ,
you cannot have a string of infinite length.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a set

of strings over Σ.
● Example: The language of palindromes over Σ =

{a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in Σ
is denoted Σ*.

● Formally, we say that L is a language over Σ if L
⊆ Σ*.

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!
● The symbol ∈ is the element-of relation.
● The symbol ε is the empty string.
● The symbol Σ denotes an alphabet.

● The expression Σ* means “all strings that can be
made from characters in Σ.”

● That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

The Cast of Characters

● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Finite Automata and Languages

● Let A be an
automaton that
processes strings
drawn from an
alphabet Σ.

● The language of A,
denoted (ℒ A), is the
set of strings over Σ
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

q₁

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

q₁

● Let D be the automaton shown to the
right. It processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

● So (ℒD) = { w ∈ {a, b}* | w ends in a }.

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ start

a, b

 q₁
a, b

q₀

q₀ start
a, b

q₁
a, b

q₂

a, b

q₀ start
a

q₁
a

q₂
a

q₃q₃

b

b

b

a, b

This means “take this
transition if you see

an a or a b.”

This means “take this
transition if you see

an a or a b.”

q₀ start a, bq₀

The Story So Far

● A finite automaton is a set of states joined by
transitions.

● Some state is designated as the start state.

● Some subset of states are designated as accepting
states.

● The automaton processes a string by beginning in the
start state and following the indicated transitions.

● If the automaton ends in an accepting state, it accepts
the input.

● Otherwise, the automaton rejects the input.

● The language of an automaton is the set of strings it
accepts.

A Small Problem

q0

q1

 0

start

q2 1

0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

The Need for Formalism

● In order to reason about the limits of what
finite automata can and cannot do, we need to
formally specify their behavior in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of a

state on some input?
● What happens if there are multiple transitions out

of a state on some input?

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA?

Designing DFAs

● At each point in its execution, the DFA can only
remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information you
need to remember.
● Each state acts as a “memento” of what you're

supposed to do next.
● Only finitely many different states means only

finitely many different things the machine can
remember.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

1 trait: count of
b’s mod 3

3 configurations:
0, 1, 2

Conclusion: we’ll make
3 states: one each for

0, 1, 2

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0 q1 q2
Conclusion: we’ll make
3 states: one each for

0, 1, 2

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0 q1 q2 Only after putting down all the
states you’ll need, think about
what moves you from state to

state, and connect them.

Only after putting down all the
states you’ll need, think about
what moves you from state to

state, and connect them.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0 q1 q2

b b

a a a

b

Seeing a letter b changes our
status in terms of count of

b's modulo three, but seeing
a doesn’t change our status.

Seeing a letter b changes our
status in terms of count of

b's modulo three, but seeing
a doesn’t change our status.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0 q1 q2

b b

a a a

b

Now ask yourself: what is your
status before you read any
input? That configuration is

our start state.

Now ask yourself: what is your
status before you read any
input? That configuration is

our start state.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Now ask yourself: what status
do we want to have at the end?

Those configuration(s) are
our accepting states.

Now ask yourself: what status
do we want to have at the end?

Those configuration(s) are
our accepting states.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

1 trait: count of
consecutive a’s seen so far

3 configurations:
0, 1, 2+

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

Ask yourself these design questions:

What trait(s) of the string so far do I need to
keep track of while processing?

For each trait, how many meaningfully distinct
configurations of that trait are there that I

need to keep track of?

1 trait: count of
consecutive a’s seen so far

3 configurations:
0, 1, 2+

Conclusion: we’ll make
3 states: one each for

0, 1, 2+

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

Conclusion: we’ll make
3 states: one each for

0, 1, 2+

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2 Only after putting down all the
states you’ll need, think about
what moves you from state to

state, and connect them.

Only after putting down all the
states you’ll need, think about
what moves you from state to

state, and connect them.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

a

b

b

 a, b

Seeing a letter b at the beginning
changes nothing. Seeing an a means

we advance our count. Seeing
a b restarts our count. Once we’ve

seen it, nothing changes our status.

Seeing a letter b at the beginning
changes nothing. Seeing an a means

we advance our count. Seeing
a b restarts our count. Once we’ve

seen it, nothing changes our status.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

a

b

b

 a, b

Now ask yourself: what is your
status before you read any
input? That configuration is

our start state.

Now ask yourself: what is your
status before you read any
input? That configuration is

our start state.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Now ask yourself: what status
do we want to have at the end?

Those configuration(s) are
our accepting states.

Now ask yourself: what status
do we want to have at the end?

Those configuration(s) are
our accepting states.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

Style note: if a transition label
includes every character in the

alphabet, we can just use
this shorthand instead of a

long list of characters.

Style note: if a transition label
includes every character in the

alphabet, we can just use
this shorthand instead of a

long list of characters.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

Next Time

● Regular Languages
● An important class of languages.

● Nondeterministic Computation
● Why must computation be linear?

● NFAs
● Automata with Magic Superpowers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

